Day 4: Ceres Search
Megathread guidelines
- Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
- You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL
FAQ
- What is this?: Here is a post with a large amount of details: https://programming.dev/post/6637268
- Where do I participate?: https://adventofcode.com/
- Is there a leaderboard for the community?: We have a programming.dev leaderboard with the info on how to join in this post: https://programming.dev/post/6631465
Uiua
This one was nice. The second part seemed quite daunting at first but wasn’t actually that hard in the end.
Run with example input here
Row ← ⌕ "XMAS" RevRow ← ⌕"SAMX" Sum ← /+/+ Count ← +∩Sum⊃Row RevRow PartOne ← ( &rs ∞ &fo "input-4.txt" ⊜∘≠@\n. ⊙+⟜∩Count⟜⍉ # horizontal and vertical search ⟜(/+⧈(Count⍉≡⬚@ ↻⇡⧻.)4) /+⧈(Count⍉≡⬚@ ↻¯⇡⧻.)4 ++ ) Mask ← °⊚×2⇡5 # Create variations of X-MAS Vars ← ( ["M S" " A " "M S"] ≡♭[∩⟜⍉]≡⇌. Mask ⊏0⊞▽¤ ) PartTwo ← ( &rs ∞ &fo "input-4.txt" ⊜∘≠@\n. ⧈(/+♭⊞≍⊙¤Vars▽Mask♭)3_3 Sum ) &p "Day 4:" &pf "Part 1: " &p PartOne &pf "Part 2: " &p PartTwo
Lisp
Not super happy with the code, but it got the job done.
Part 1 and 2
(defun p1-process-line (line) (to-symbols line)) (defun found-word-h (word data i j) "checks for a word existing from the point horizontally to the right" (loop for j2 from j for w in word when (not (eql w (aref data i j2))) return nil finally (return t))) (defun found-word-v (word data i j) "checks for a word existing from the point vertically down" (loop for i2 from i for w in word when (not (eql w (aref data i2 j))) return nil finally (return t))) (defun found-word-d-l (word data i j) "checks for a word existsing from the point diagonally to the left and down" (destructuring-bind (n m) (array-dimensions data) (declare (ignorable n)) (and (>= (- i (length word)) -1) (>= m (+ j (length word))) (loop for i2 from i downto 0 for j2 from j for w in word when (not (eql w (aref data i2 j2))) return nil finally (return t))))) (defun found-word-d-r (word data i j) "checks for a word existing from the point diagonally to the right and down" (destructuring-bind (n m) (array-dimensions data) (and (>= n (+ i (length word))) (>= m (+ j (length word))) (loop for i2 from i for j2 from j for w in word when (not (eql w (aref data i2 j2))) return nil finally (return t))) )) (defun count-word-h (data word) "Counts horizontal matches of the word" (let ((word-r (reverse word)) (word-l (length word))) (destructuring-bind (n m) (array-dimensions data) (loop for i from 0 below n sum (loop for j from 0 upto (- m word-l) count (found-word-h word data i j) count (found-word-h word-r data i j)))))) (defun count-word-v (data word) "Counts vertical matches of the word" (let ((word-r (reverse word)) (word-l (length word))) (destructuring-bind (n m) (array-dimensions data) (loop for j from 0 below m sum (loop for i from 0 upto (- n word-l) count (found-word-v word data i j) count (found-word-v word-r data i j)))))) (defun count-word-d (data word) "Counts diagonal matches of the word" (let ((word-r (reverse word))) (destructuring-bind (n m) (array-dimensions data) (loop for i from 0 below n sum (loop for j from 0 below m count (found-word-d-l word data i j) count (found-word-d-l word-r data i j) count (found-word-d-r word data i j) count (found-word-d-r word-r data i j) ))))) (defun run-p1 (file) "cares about the word xmas in any direction" (let ((word '(X M A S)) (data (list-to-2d-array (read-file file #'p1-process-line)))) (+ (count-word-v data word) (count-word-h data word) (count-word-d data word)))) (defun run-p2 (file) "cares about an x of mas crossed with mas" (let ((word '(M A S)) (word-r '(S A M)) (data (list-to-2d-array (read-file file #'p1-process-line)))) (destructuring-bind (n m) (array-dimensions data) (loop for i from 0 below (- n 2) sum (loop for j from 0 below (- m 2) count (and (found-word-d-r word data i j) (found-word-d-l word data (+ i 2) j)) count (and (found-word-d-r word-r data i j) (found-word-d-l word data (+ i 2) j)) count (and (found-word-d-r word data i j) (found-word-d-l word-r data (+ i 2) j)) count (and (found-word-d-r word-r data i j) (found-word-d-l word-r data (+ i 2) j)) )))))
Zig
const std = @import("std"); const List = std.ArrayList; const tokenizeScalar = std.mem.tokenizeScalar; const parseInt = std.fmt.parseInt; const print = std.debug.print; const eql = std.mem.eql; var gpa = std.heap.GeneralPurposeAllocator(.{}){}; const alloc = gpa.allocator(); const Point = struct { x: isize, y: isize, fn add(self: *const Point, point: *const Point) Point { return Point{ .x = self.x + point.x, .y = self.y + point.y }; } }; // note: i have no idea how to use this or if it's even possible // const DirectionType = enum(u8) { Up, Down, Left, Right, UpLeft, UpRight, DownLeft, DownRight }; // const Direction = union(DirectionType) { // up: Point = .{ .x = 0, .y = 0 }, // }; const AllDirections = [_]Point{ .{ .x = 0, .y = -1 }, // up .{ .x = 0, .y = 1 }, // down .{ .x = -1, .y = 0 }, // left .{ .x = 1, .y = 0 }, // right .{ .x = -1, .y = -1 }, // up left .{ .x = 1, .y = -1 }, // up right .{ .x = -1, .y = 1 }, // down left .{ .x = 1, .y = 1 }, // down right }; const Answer = struct { xmas: u32, mas: u32, }; pub fn searchXmas(letters: List([]const u8), search_char: u8, position: Point, direction: Point) u32 { const current_char = getChar(letters, position); if (current_char == search_char) { const next = position.add(&direction); if (current_char == 'M') { return searchXmas(letters, 'A', next, direction); } else if (current_char == 'A') { return searchXmas(letters, 'S', next, direction); } else if (current_char == 'S') { return 1; // found all letters } } return 0; } pub fn countXmas(letters: List([]const u8), starts: List(Point)) u32 { var counter: u32 = 0; for (starts.items) |start| { for (AllDirections) |direction| { const next = start.add(&direction); counter += searchXmas(letters, 'M', next, direction); } } return counter; } pub fn countMas(letters: List([]const u8), starts: List(Point)) u32 { var counter: u32 = 0; for (starts.items) |start| { const a_char = getChar(letters, start) orelse continue; const top_left_char = getChar(letters, start.add(&AllDirections[4])) orelse continue; const down_right_char = getChar(letters, start.add(&AllDirections[7])) orelse continue; const top_right_char = getChar(letters, start.add(&AllDirections[5])) orelse continue; const down_left_char = getChar(letters, start.add(&AllDirections[6])) orelse continue; const tldr = [3]u8{ top_left_char, a_char, down_right_char }; const trdl = [3]u8{ top_right_char, a_char, down_left_char }; if ((eql(u8, &tldr, "MAS") or eql(u8, &tldr, "SAM")) and (eql(u8, &trdl, "MAS") or eql(u8, &trdl, "SAM"))) { counter += 1; } } return counter; } pub fn getChar(letters: List([]const u8), point: Point) ?u8 { if (0 > point.x or point.x >= letters.items.len) { return null; } const row = @as(usize, @intCast(point.x)); if (0 > point.y or point.y >= letters.items[row].len) { return null; } const col = @as(usize, @intCast(point.y)); return letters.items[row][col]; } pub fn solve(input: []const u8) !Answer { var rows = tokenizeScalar(u8, input, '\n'); var letters = List([]const u8).init(alloc); defer letters.deinit(); var x_starts = List(Point).init(alloc); defer x_starts.deinit(); var a_starts = List(Point).init(alloc); defer a_starts.deinit(); var x: usize = 0; while (rows.next()) |row| { try letters.append(row); for (row, 0..) |letter, y| { if (letter == 'X') { try x_starts.append(.{ .x = @intCast(x), .y = @intCast(y) }); } else if (letter == 'A') { try a_starts.append(.{ .x = @intCast(x), .y = @intCast(y) }); } } x += 1; } // PART 1 const xmas = countXmas(letters, x_starts); // PART 2 const mas = countMas(letters, a_starts); return Answer{ .xmas = xmas, .mas = mas }; } pub fn main() !void { const answer = try solve(@embedFile("input.txt")); print("Part 1: {d}\n", .{answer.xmas}); print("Part 2: {d}\n", .{answer.mas}); } test "test input" { const answer = try solve(@embedFile("test.txt")); try std.testing.expectEqual(18, answer.xmas); }
Rust
I had a hunch about part two that didn’t pay off, so I over-coded this instead of just using an array of arrays.
use std::{fs, str::FromStr}; use color_eyre::eyre::{Report, Result}; #[derive(Debug, Copy, Clone)] enum Direction { N, NE, E, SE, S, SW, W, NW, } impl Direction { fn all() -> &'static [Direction] { &[ Direction::N, Direction::NE, Direction::E, Direction::SE, Direction::S, Direction::SW, Direction::W, Direction::NW, ] } } #[derive(Debug, PartialEq, Eq)] struct WordSearch { grid: Vec<char>, width: usize, height: usize, } impl FromStr for WordSearch { type Err = Report; fn from_str(s: &str) -> Result<Self, Self::Err> { let grid: Vec<_> = s.chars().filter(|&ch| ch != '\n').collect(); let width = s .chars() .position(|ch| ch == '\n') .ok_or_else(|| Report::msg("grid width cannot be zero, or one line"))?; let height = grid.len() / width; Ok(Self { grid, width, height, }) } } impl WordSearch { fn neighbour(&self, i: usize, dir: Direction) -> Option<usize> { let width = self.width; let length = self.grid.len(); use Direction::*; match dir { N if i >= width => Some(i - width), NE if i >= width && i % width != width - 1 => Some(i - width + 1), E if i % width != width - 1 => Some(i + 1), SE if i + width + 1 < length && i % width != width - 1 => Some(i + width + 1), S if i + width < length => Some(i + width), SW if i + width - 1 < length && i % width != 0 => Some(i + width - 1), W if i % width != 0 => Some(i - 1), NW if i >= width && i % width != 0 => Some(i - width - 1), _ => None, } } fn word_count(&self, word: &str) -> Result<usize> { let mut found = 0; for i in 0..self.grid.len() { for dir in Direction::all() { if self.word_present(word, i, *dir) { found += 1; } } } Ok(found) } fn x_count(&self) -> Result<usize> { let mut found = 0; for i in 0..self.grid.len() { if self.x_present(i) { found += 1; } } Ok(found) } fn word_present(&self, word: &str, location: usize, dir: Direction) -> bool { let mut next = Some(location); for ch in word.chars() { let i = if let Some(i) = next { i } else { // Off the edge return false; }; if self.grid[i] != ch { return false; } next = self.neighbour(i, dir); } true } fn x_present(&self, location: usize) -> bool { if self.grid.get(location) != Some(&'A') { return false; } let diags = [ (Direction::NE, Direction::SW), (Direction::NW, Direction::SE), ]; diags.iter().all(|(dir_a, dir_b)| { let Some(a_idx) = self.neighbour(location, *dir_a) else { return false; }; let Some(b_idx) = self.neighbour(location, *dir_b) else { return false; }; let a = self.grid[a_idx]; let b = self.grid[b_idx]; (a == 'M' && b == 'S') || (b == 'M' && a == 'S') }) } } fn part1(filepath: &str) -> Result<usize> { let input = fs::read_to_string(filepath)?; let grid = WordSearch::from_str(&input)?; grid.word_count("XMAS") } fn part2(filepath: &str) -> Result<usize> { let input = fs::read_to_string(filepath)?; let grid = WordSearch::from_str(&input)?; grid.x_count() } fn main() -> Result<()> { color_eyre::install()?; println!("Part 1: {}", part1("d04/input.txt")?); println!("Part 2: {}", part2("d04/input.txt")?); Ok(()) }
Elixir
defmodule AdventOfCode.Solution.Year2024.Day04 do use AdventOfCode.Solution.SharedParse defmodule Map do defstruct [:chars, :width, :height] end @impl true def parse(input) do chars = String.split(input, "\n", trim: true) |> Enum.map(&String.codepoints/1) %Map{chars: chars, width: length(Enum.at(chars, 0)), height: length(chars)} end def at(%Map{} = map, x, y) do cond do x < 0 or x >= map.width or y < 0 or y >= map.height -> "" true -> map.chars |> Enum.at(y, []) |> Enum.at(x, "") end end def part1(map) do dirs = for dx <- -1..1, dy <- -1..1, {dx, dy} != {0, 0}, do: {dx, dy} xmas = String.codepoints("XMAS") |> Enum.with_index() |> Enum.drop(1) for x <- 0..(map.width - 1), y <- 0..(map.height - 1), "X" == at(map, x, y), {dx, dy} <- dirs, xmas |> Enum.all?(fn {c, n} -> at(map, x + dx * n, y + dy * n) == c end), reduce: 0 do t -> t + 1 end end def part2(map) do for x <- 0..(map.width - 1), y <- 0..(map.height - 1), "A" == at(map, x, y), (at(map, x - 1, y - 1) <> at(map, x + 1, y + 1)) in ["MS", "SM"], (at(map, x - 1, y + 1) <> at(map, x + 1, y - 1)) in ["MS", "SM"], reduce: 0 do t -> t + 1 end end end
Smalltalk
I could have done it in 2 fns if I made them more generic, but couldn’t be bothered
day4p1: input | lines sum w h| sum := ('XMAS' asRegex matchesIn: input) size. "forward" sum := sum + ('SAMX' asRegex matchesIn: input) size. "backwards sep cause overlapping" lines := input lines. h := lines size. w := (lines at: 1) size. 1 to: h-3 do: [ :p1 | 1 to: w do: [ :p2 | sum := sum + (self d4diag: lines p1: p1 p2: p2 dir: -1). sum := sum + (self d4diag: lines p1: p1 p2: p2 dir: 0). sum := sum + (self d4diag: lines p1: p1 p2: p2 dir: 1). ] ]. ^ sum.
d4diag: input p1: p1 p2: p2 dir: dir | reverse xm ii | xm := 'XMAS'. reverse := ((input at: p1) at: p2) = $S. 0 to: 3 do: [ :i | ii := reverse ifTrue: [ 4 - i ] ifFalse: [ i + 1 ]. "if out of bounds, obv not possible" ((xm at: ii) = ((input at: p1 + i) at: i * dir + p2 ifAbsent: [^ 0])) ifFalse: [^ 0] ]. ^ 1.
Part 2
day4p2: input | lines sum w h pos | "Find all diag mas, then check of 1 . -1 (we can look back on every -1" sum := 0. lines := input lines. h := lines size. w := (lines at: 1) size. 1 to: h-2 do: [ :p1 | pos := Array new: w withAll: false. 1 to: w do: [ :p2 | (self d42: lines p1: p1 p2: p2 dir: -1) ifTrue: [ sum := sum + ((pos at: p2-2) ifTrue:[1] ifFalse:[0]). ]. (self d42: lines p1: p1 p2: p2 dir: 1) ifTrue: [pos at: p2 put: true]. ] ]. ^ sum.
d42: input p1: p1 p2: p2 dir: dir | reverse xm ii | xm := 'MAS'. reverse := ((input at: p1) at: p2) = $S. 0 to: 2 do: [ :i | ii := reverse ifTrue: [ 3 - i ] ifFalse: [ i + 1 ]. "if out of bounds, obv not possible" ((xm at: ii) = ((input at: p1 + i) at: i * dir + p2 ifAbsent: [^ false])) ifFalse: [^ false] ]. ^ true.
Rust
I’m a day behind on this one due to a lot of work with my job and school.
use std::iter::zip; use crate::utils::read_lines; pub fn solution1() { let puzzle = read_puzzle(); let horizontal_sum = puzzle .iter() .map(|line| { line.windows(4) .filter(|window| { matches!(window, [b'X', b'M', b'A', b'S'] | [b'S', b'A', b'M', b'X']) }) .count() as u32 }) .sum::<u32>(); let vertical_and_diagonal_sum = puzzle .windows(4) .map(|window| { count_xmas(window, (0, 0, 0, 0)) + count_xmas(window, (0, 1, 2, 3)) + count_xmas(window, (3, 2, 1, 0)) }) .sum::<u32>(); println!( "XMAS count = {}", horizontal_sum + vertical_and_diagonal_sum ); } pub fn solution2() { let puzzle = read_puzzle(); let sum = puzzle .windows(3) .map(|window| { zip( window[0].windows(3), zip(window[1].windows(3), window[2].windows(3)), ) .map(|(a, (b, c))| (a, b, c)) .filter(|tuple| { matches!( tuple, ([b'M', _, b'M'], [_, b'A', _], [b'S', _, b'S']) | ([b'S', _, b'M'], [_, b'A', _], [b'S', _, b'M']) | ([b'M', _, b'S'], [_, b'A', _], [b'M', _, b'S']) | ([b'S', _, b'S'], [_, b'A', _], [b'M', _, b'M']) ) }) .count() as u32 }) .sum::<u32>(); println!("X-MAS count = {sum}"); } fn count_xmas( window: &[Vec<u8>], (skip0, skip1, skip2, skip3): (usize, usize, usize, usize), ) -> u32 { zip( window[0].iter().skip(skip0), zip( window[1].iter().skip(skip1), zip(window[2].iter().skip(skip2), window[3].iter().skip(skip3)), ), ) .map(|(a, (b, (c, d)))| (a, b, c, d)) .filter(|tup| matches!(tup, (b'X', b'M', b'A', b'S') | (b'S', b'A', b'M', b'X'))) .count() as u32 } fn read_puzzle() -> Vec<Vec<u8>> { read_lines("src/day4/input.txt") .map(|line| line.into_bytes()) .collect() }
The standard library
windows
method and pattern matching have been carrying me this year so far.Python
Essentially I’m extracting strings from the word search and compare them to the desired value. For part one that means extracting from an X in eight directions. Because I’m reading from the central X outwards, I don’t need to reverse any of them.
Part two reads two strings in an X-shape around the coordinates of each X. The resulting strings are filtered down to include only “MAS” and “SAM”. If there are exactly two strings we found an X-MAS.from pathlib import Path def parse_input(input: str) -> list[str]: return input.strip().splitlines() def extract_strings_one(m: int, n: int, haystack: list[str], l: int = 4) -> list[str]: result = [] # Right if m + l <= len(haystack[n]): result.append(haystack[n][m : m + l]) # Up-Right if m + l <= len(haystack[n]) and n > l - 2: result.append("".join([haystack[n - i][m + i] for i in range(l)])) # Up if n > l - 2: result.append("".join([haystack[n - i][m] for i in range(l)])) # Up-Left if m > l - 2 and n > l - 2: result.append("".join([haystack[n - i][m - i] for i in range(l)])) # Left if m > l - 2: result.append("".join([haystack[n][m - i] for i in range(l)])) # Down-Left if m > l - 2 and n + l <= len(haystack): result.append("".join([haystack[n + i][m - i] for i in range(l)])) # Down if n + l <= len(haystack): result.append("".join([haystack[n + i][m] for i in range(l)])) # Down-Right if m + l <= len(haystack[n]) and n + l <= len(haystack): result.append("".join([haystack[n + i][m + i] for i in range(l)])) return result def extract_strings_two(m: int, n: int, haystack: list[str], d: int = 1) -> list[str]: result = [] if 0 <= m - d and m + d < len(haystack[n]) and 0 <= n - d and n + d < len(haystack): result.append("".join([haystack[n + i][m + i] for i in range(-d, d + 1)])) result.append("".join([haystack[n - i][m + i] for i in range(-d, d + 1)])) return result def part_one(input: str) -> int: lines = parse_input(input) xmas_count = 0 for i, line in enumerate(lines): x = line.find("X", 0) while x != -1: xmas_count += len( list(filter(lambda s: s == "XMAS", extract_strings_one(x, i, lines))) ) x = line.find("X", x + 1) return xmas_count def part_two(input: str) -> int: lines = parse_input(input) x_mas_count = 0 for i, line in enumerate(lines[1:-1], 1): a = line.find("A", 0) while a != -1: if ( len( list( filter( lambda s: s in ("MAS", "SAM"), extract_strings_two(a, i, lines), ) ) ) == 2 ): x_mas_count += 1 a = line.find("A", a + 1) return x_mas_count if __name__ == "__main__": input = Path("input").read_text("utf-8") print(part_one(input)) print(part_two(input))
Haskell
Popular language this year :)
I got embarrassingly stuck on this one trying to be clever with list operations. Then I realized I should just use an array…
import Data.Array.Unboxed (UArray) import Data.Array.Unboxed qualified as A import Data.Bifunctor readInput :: String -> UArray (Int, Int) Char readInput s = let rows = lines s n = length rows in A.listArray ((1, 1), (n, n)) $ concat rows s1 `eq` s2 = s1 == s2 || s1 == reverse s2 part1 arr = length $ filter isXmas $ concatMap lines $ A.indices arr where isXmas ps = all (A.inRange $ A.bounds arr) ps && map (arr A.!) ps `eq` "XMAS" lines p = [take 4 $ iterate (bimap (+ di) (+ dj)) p | (di, dj) <- [(1, 0), (0, 1), (1, 1), (1, -1)]] part2 arr = length $ filter isXmas innerPoints where innerPoints = let ((i1, j1), (i2, j2)) = A.bounds arr in [(i, j) | i <- [i1 + 1 .. i2 - 1], j <- [j1 + 1 .. j2 - 1]] isXmas p = up p `eq` "MAS" && down p `eq` "MAS" up (i, j) = map (arr A.!) [(i + 1, j - 1), (i, j), (i - 1, j + 1)] down (i, j) = map (arr A.!) [(i - 1, j - 1), (i, j), (i + 1, j + 1)] main = do input <- readInput <$> readFile "input04" print $ part1 input print $ part2 input
I struggled a lot more when doing list slices that I would’ve liked to
Haskell
import Data.List qualified as List collectDiagonal :: [String] -> Int -> Int -> String collectDiagonal c y x | length c > y && length (c !! y) > x = c !! y !! x : collectDiagonal c (y+1) (x+1) | otherwise = [] part1 c = do let forwardXMAS = map (length . filter (List.isPrefixOf "XMAS") . List.tails) $ c let backwardXMAS = map (length . filter (List.isPrefixOf "XMAS") . List.tails . reverse) $ c let downwardXMAS = map (length . filter (List.isPrefixOf "XMAS") . List.tails ) . List.transpose $ c let upwardXMAS = map (length . filter (List.isPrefixOf "XMAS") . List.tails . reverse ) . List.transpose $ c let leftSideDiagonals = map (\ y -> collectDiagonal c y 0) [0..length c] let leftTopDiagonals = map (\ x -> collectDiagonal c 0 x) [1..(length . List.head $ c)] let leftDiagonals = leftSideDiagonals ++ leftTopDiagonals let rightSideDiagonals = map (\ y -> collectDiagonal (map List.reverse c) y 0) [0..length c] let rightTopDiagonals = map (\ x -> collectDiagonal (map List.reverse c) 0 x) [1..(length . List.head $ c)] let rightDiagonals = rightSideDiagonals ++ rightTopDiagonals let diagonals = leftDiagonals ++ rightDiagonals let diagonalXMAS = map (length . filter (List.isPrefixOf "XMAS") . List.tails) $ diagonals let reverseDiagonalXMAS = map (length . filter (List.isPrefixOf "XMAS") . List.tails . reverse) $ diagonals print . sum $ [sum forwardXMAS, sum backwardXMAS, sum downwardXMAS, sum upwardXMAS, sum diagonalXMAS, sum reverseDiagonalXMAS] return () getBlock h w c y x = map (take w . drop x) . take h . drop y $ c isXBlock b = do let diagonal1 = collectDiagonal b 0 0 let diagonal2 = collectDiagonal (map List.reverse b) 0 0 diagonal1 `elem` ["SAM", "MAS"] && diagonal2 `elem` ["SAM", "MAS"] part2 c = do let lineBlocks = List.map (getBlock 3 3 c) [0..length c - 1] let groupedBlocks = List.map (flip List.map [0..(length . head $ c) - 1]) lineBlocks print . sum . map (length . filter isXBlock) $ groupedBlocks return () main = do c <- lines <$> getContents part1 c part2 c return ()
J
Unsurprisingly this is the kind of problem that J is really good at. The dyadic case (table) of the adverb
/
is doing all the heavy lifting here: it makes a higher rank tensor by traversing items of the specified rank on each side and combining them according to the remaining frame of each side’s shape. The hard part is arranging the arguments so that your resulting matrix has its axes in the correct order.data_file_name =: '4.data' NB. cutopen yields boxed lines, so unbox them and ravel items to make a letter matrix grid =: ,. > cutopen fread data_file_name NB. pad the grid on every side with #'XMAS' - 1 spaces hpadded_grid =: ((' ' & ,) @: (, & ' '))"1 grid padded_grid =: (3 1 $ ' ') , hpadded_grid , (3 1 $ ' ') NB. traversal vectors directions =: 8 2 $ 1 0 1 1 0 1 _1 1 _1 0 _1 _1 0 _1 1 _1 NB. rpos cpos matches rdir cdir if the string starting at rpos cpos in NB. direction rdir cdir is the string we want matches =: 4 : 0 */ ,'XMAS' -: padded_grid {~ <"1 x +"1 y *"1 0 i. 4 )"1 positions =: (3 + i. 0 { $ grid) ,"0/ (3 + i. 1 { $ grid) result1 =: +/, positions matches/ directions NB. pairs of traversal vectors x_directions =: 4 2 2 $ 1 1 _1 1 1 1 1 _1 _1 _1 _1 1 _1 _1 1 _1 NB. rpos cpos x_matches 2 2 $ rdir1 cdir1 rdir2 cdir2 if there is an 'A' at NB. rpos cpos and the string in each of dir1 and dir2 centered at rpos cpos NB. is the string we want x_matches =: 4 : 0 NB. (2 2 $ rdir1 cdir1 rdir2 cdir2) *"1 0/ (_1 + i.3) yields a matrix NB. 2 3 $ (_1 * dir1) , (0 * dir1) , (1 * dir1) followed by the same for dir2 */ ,'MAS' -:"1 padded_grid {~ <"1 x +"1 y *"1 0/ _1 + i. 3 )"1 2 result2 =: +/, positions x_matches/ x_directions
Nim
Could be done more elegantly, but I haven’t bothered yet.
proc solve(input: string): AOCSolution[int, int] = var lines = input.splitLines() block p1: # horiz for line in lines: for i in 0..line.high-3: if line[i..i+3] in ["XMAS", "SAMX"]: inc result.part1 for y in 0..lines.high-3: #vert for x in 0..lines[0].high: let word = collect(for y in y..y+3: lines[y][x]) if word in [@"XMAS", @"SAMX"]: inc result.part1 #diag \ for x in 0..lines[0].high-3: let word = collect(for d in 0..3: lines[y+d][x+d]) if word in [@"XMAS", @"SAMX"]: inc result.part1 #diag / for x in 3..lines[0].high: let word = collect(for d in 0..3: lines[y+d][x-d]) if word in [@"XMAS", @"SAMX"]: inc result.part1 block p2: for y in 0..lines.high-2: for x in 0..lines[0].high-2: let diagNW = collect(for d in 0..2: lines[y+d][x+d]) let diagNE = collect(for d in 0..2: lines[y+d][x+2-d]) if diagNW in [@"MAS", @"SAM"] and diagNE in [@"MAS", @"SAM"]: inc result.part2
Uiua
Just part1 for now as I need to walk the dog :-)
[edit] Part 2 now added, and a nicer approach than Part 1 in my opinion, if you’re able to keep that many dimensions straight in your head :-)
[edit 2] Tightened it up a bit more.
Grid ← ⊜∘⊸≠@\n "MMMSXXMASM\nMSAMXMSMSA\nAMXSXMAAMM\nMSAMASMSMX\nXMASAMXAMM\nXXAMMXXAMA\nSMSMSASXSS\nSAXAMASAAA\nMAMMMXMMMM\nMXMXAXMASX" ≡⍉⍉×⇡4¤[1_0 0_1 1_1 1_¯1] # Use core dirs to build sets of 4-offsets. ↯∞_2⇡△ Grid # Get all possible starting points. &p/+♭⊞(+∩(≍"XMAS")⇌.⬚@.⊡:Grid≡+¤) # Part 1. Join the two into a table, use to pick 4-elements, check, count. Diags ← [[¯. 1_1] [¯. 1_¯1]] BothMas ← /×≡(+∩(≍"MS")⇌.)⬚@.⊡≡+Diags¤¤ # True if both diags here are MAS. &p/+≡BothMas⊚="A"⟜¤Grid # Part 2. For all "A"s in grid, check diags, count where good.
I’m not even sure how to write most of these characters
The operators have all got ascii names you can type, and the formatter converts them to the symbols. It’s a bit odd but really worthwhile, as you get access to the powerful array handling functionality that made solving today’s challenges so much more straightforward than in other languages.
It looks quite functional indeed
Factor
spoiler
: get-input ( -- rows ) "vocab:aoc-2024/04/input.txt" utf8 file-lines ; : verticals ( rows -- lines ) [ dimension last [0..b) ] keep cols ; : slash-origins ( rows -- coords ) dimension [ first [0..b) [ 0 2array ] map ] [ first2 [ 1 - ] [ 1 (a..b] ] bi* [ 2array ] with map ] bi append ; : backslash-origins ( rows -- coords ) dimension first2 [ [0..b) [ 0 2array ] map ] [ 1 (a..b] [ 0 swap 2array ] map ] bi* append ; : slash ( rows origin -- line ) first2 [ 0 [a..b] ] [ pick dimension last [a..b) ] bi* zip swap matrix-nths ; : backslash ( rows origin -- line ) [ dup dimension ] dip first2 [ over first [a..b) ] [ pick last [a..b) ] bi* zip nip swap matrix-nths ; : slashes ( rows -- lines ) dup slash-origins [ slash ] with map ; : backslashes ( rows -- lines ) dup backslash-origins [ backslash ] with map ; : word-count ( line word -- n ) dupd [ reverse ] dip '[ _ subseq-indices length ] bi@ + ; : part1 ( -- n ) get-input { [ ] [ verticals ] [ slashes ] [ backslashes ] } cleave-array concat [ "XMAS" word-count ] map-sum ; : origin-adistances ( rows origins line-quot: ( rows origin -- line ) -- origin-adistances-assoc ) with zip-with "MAS" "SAM" [ '[ [ _ subseq-indices ] map-values ] ] bi@ bi append harvest-values [ [ 1 + ] map ] map-values ; inline : a-coords ( origin-adistances coord-quot: ( adistance -- row-delta col-delta ) -- coords ) '[ first2 [ @ 2array v+ ] with map ] map-concat ; inline : slash-a-coords ( rows -- coords ) dup slash-origins [ slash ] origin-adistances [ [ 0 swap - ] keep ] a-coords ; : backslash-a-coords ( rows -- coords ) dup backslash-origins [ backslash ] origin-adistances [ dup ] a-coords ; : part2 ( -- n ) get-input [ slash-a-coords ] [ backslash-a-coords ] bi intersect length ;
Better viewed on GitHub.
Haskell
import Control.Arrow import Data.Array.Unboxed import Data.List type Pos = (Int, Int) type Board = Array Pos Char data Dir = N | NE | E | SE | S | SW | W | NW target = "XMAS" parse s = listArray ((1, 1), (n, m)) [l !! i !! j | i <- [0 .. n - 1], j <- [0 .. m - 1]] where l = lines s (n, m) = (length $ head l, length l) move N = first pred move S = first succ move E = second pred move W = second succ move NW = move N . move W move SW = move S . move W move NE = move N . move E move SE = move S . move E check :: Board -> Pos -> Int -> Dir -> Bool check b p i d = i >= length target || ( inRange (bounds b) p && (b ! p) == (target !! i) && check b (move d p) (succ i) d ) checkAllDirs :: Board -> Pos -> Int checkAllDirs b p = length . filter (check b p 0) $ [N, NE, E, SE, S, SW, W, NW] check2 :: Board -> Pos -> Bool check2 b p = all (inRange (bounds b)) moves && ((b ! p) == 'A') && ("SSMM" `elem` rotations) where rotations = rots $ (b !) <$> moves moves = flip move p <$> [NE, SE, SW, NW] rots xs = init $ zipWith (++) (tails xs) (inits xs) part1 b = sum $ checkAllDirs b <$> indices b part2 b = length . filter (check2 b) $ indices b main = getContents >>= print . (part1 &&& part2) . parse