• xkforce@lemmy.world
    link
    fedilink
    English
    arrow-up
    16
    ·
    9 months ago

    The number of solutions/roots is equal to the highest power x is raised to (there are other forms with different rules and this applies to R and C not higher order systems)

    Some roots can be complex and some can be duplicates but when it comes to the real and complex roots, that rule generally holds.

    • Gnome Kat@lemmy.blahaj.zone
      link
      fedilink
      English
      arrow-up
      5
      arrow-down
      1
      ·
      edit-2
      9 months ago

      I think you can make arbitrarily complicated roots if you move over to Gn which includes the R and C roots…

      For example the grade 4 blade (3e1e2e3e4)^2 = 9 in G4

      Complex roots are covered because the grade 2 blade (e1e2)^2 = -1 making it identical to i so Gn (n>=2) includes C.

      Gn also includes all the scalars (grade 0 blades) so all the real roots are included.

      Gn also includes all the vectors (grade 1 blades) so any vector with length 3 will square to 9 because u^2 = u dot u = |u|^2 where u is a vector.

      All blades will square to a scalar but blades are not the only thing in Gn so things get weird with the multivectors(sums of different grades). Any blade with grade n%4 < 2 will square to a positive scalar and the other grades will square to a negative, with the abs of the scalar equal to the norm2 of the blade. Can pretty much just make as many roots as you want if you are willing to move into higher dimensional spaces and use a way cooler product.

        • Gnome Kat@lemmy.blahaj.zone
          link
          fedilink
          English
          arrow-up
          2
          ·
          edit-2
          9 months ago

          Oh no, you were right on the money. In G2 you have two basis vectors e1 and e2. The geometric product of vectors specifically is equivalent to uv = u dot v + u wedge v… the dot returns a scalar, the wedge returns a bivector. When you have two vectors be orthonormal like the basis vectors, the dot goes to 0 and you are just left with u wedge v. So e1e2 returns a bivector with norm 1, its the only basis bivector for G2.

          e1e2^2 = (e1e2)*(e1e2) = e1e2e1e2

          A nice thing about the geometric product is its associative so you can rewrite as e1*(e2e1)*e2… again that middle product is still just a wedge but the wedge product is anti commutative so e2e1 = -e1e2. Meaning you can rewrite the above as e1*(-e1e2)*e2 = -(e1e1)*(e2e2) = -(e1 dot e1)*(e2 dot e2) = -(1)*(1) = -1… Thus e1e2 squares to -1 and is the same as i. And now you can think of the geometric product of two vectors as uv = u dot v + u wedge v = a + bi which is just a complex number.

          In G3 you can do the same but now you have 3 basis vectors to work with, e1, e2, e3. Meaning you can construct 3 new basis bivectors e1e2, e2e3, e3e1. You can flip them to be e2e1, e3e2, e1e3 without any issues its just convention and then its the same as quaternions. They all square to -1 and e2e1*e3e2*e1e3 = -e2e1e2e3e1e3 = e2e1e2e1e3e3 = e2e1e2e1 = -1 which is the same as i,j,k of quaternions. So just like in G2 the bivectors + scalars form C you get the quaternions in G3. Both of them are just bivectors and they work the same way. Octonions and beyond can be made in higher dimensions. Geometric algebra is truly some cool shit.

    • Beetschnapps@lemmy.world
      link
      fedilink
      English
      arrow-up
      2
      arrow-down
      8
      ·
      edit-2
      9 months ago

      To translate: As a child learning math this equates to “ignore math, the explanations don’t explain anything real, they only explain more math.“

      “The only explanation is more abstraction with no real world application as far as math class is concerned. Frankly, there’s more application to your own life experience if you focus on language and the arts.”

      • overcast5348@lemmy.world
        link
        fedilink
        English
        arrow-up
        10
        arrow-down
        1
        ·
        9 months ago

        I’m guessing that you were one of those “I won’t ever use all this math” kind of students?

        • Beetschnapps@lemmy.world
          link
          fedilink
          English
          arrow-up
          2
          ·
          9 months ago

          I was one of those students who asked how it would be used, the teachers didn’t do the whole real world application part, and I never needed to go past trig.

          I work with engineers and use math like any other human on the planet but really wish mathematics was taught differently to make it more interesting. You hear a PHD candidate talk about the hairy ball problem and the math is interesting. Math class never was.

      • Maalus@lemmy.world
        link
        fedilink
        English
        arrow-up
        4
        arrow-down
        2
        ·
        9 months ago

        Or you were just shit at maths and don’t have any idea how useful it is because you avoid it like the plague.