European Union lawmakers are set to give final approval to the 27-nation bloc’s artificial intelligence law Wednesday, putting the world-leading rules on track to take effect later this year.

Lawmakers in the European Parliament are poised to vote in favor of the Artificial Intelligence Act five years after they were first proposed. The AI Act is expected to act as a global signpost for other governments grappling with how to regulate the fast-developing technology.

“The AI Act has nudged the future of AI in a human-centric direction, in a direction where humans are in control of the technology and where it — the technology — helps us leverage new discoveries, economic growth, societal progress and unlock human potential,” said Dragos Tudorache, a Romanian lawmaker who was a co-leader of the Parliament negotiations on the draft law.

Big tech companies generally have supported the need to regulate AI while lobbying to ensure any rules work in their favor. OpenAI CEO Sam Altman caused a minor stir last year when he suggested the ChatGPT maker could pull out of Europe if it can’t comply with the AI Act — before backtracking to say there were no plans to leave.

  • WalnutLum
    link
    fedilink
    arrow-up
    2
    ·
    10 months ago

    Open sourcing the training method without open sourcing the training data is essentially like making only part of your full source open to the public.

    Even going as far as making your training method source available, and a pre-trained kernel available (like what Mistral does) is essentially the same as what a lot of open source-adjacent companies provide.

    A pre-trained neural kernel isn’t any different effectively than a pre-compiled binary library (like a dll). So what these companies are providing is closed-source binaries alongside the compilation instructions for them. But without the data that trained the kernel it can hardly be called “open source” as the actual “source” of the logic behind the kernel (the training data) is still closed to the public.

    You can fine-tune and re-train and re-quantize the models all you want but you’re not really manipulating the “source” if all you have is the gptq or safetensors or some other pre-trained set of weights.