• @Zerush
    cake
    link
    22 years ago

    A water bottle (~1 liter Water) need a lot of energy to heat the Water and stores the heat for1 Houre, not more. This patches don’t need any energy to heat, no more than the humidity of the environment, to start an exothermic process that lasts between 8-12 Hours, depending on the size of the patch. It requires no more energy than taking it out of the package so that it starts to heat up on its own. It does not require any external energy input, such as heating water electrically, with gas or other fuel, to heat it first, as is the case with the hot water bottle.

    • @rcbrk
      link
      42 years ago

      You’re not considering the energy required to smelt the iron.

      Iron filings (in a collected quantity high enough to make manufacturing these heat packs worthwhile) are not a waste product, they are recycled – saving the smelting of that much new iron.

      Sawdust+iron heat packs are a very useful and non-hazardous product, for sure, but aside from situations where a hot water bottle is impractical, hot water bottle still wins.

      • @rcbrk
        link
        2
        edit-2
        2 years ago

        So… I really don’t know chemistry, and these aren’t the highest quality references, but here goes:

        • 4 mol of iron in a heat pack provides 1648.4 kJ of heat. [1]
        • 4 mol of iron weighs 223g. [2]
        • Recycling 1000kg of steel saves 642 kWh of energy. [3]
          • Recycling 0.223kg steel saves 642 * 0.223 / 1000 = ~ 0.143 kWh
          • 0.143 * 3600 = 515 kJ

        Huh. So maybe heat packs are a reasonable use of scrap iron’s embodied energy after all. Assuming you have a sufficient source of uncontaminated steel filing waste and that it’s economical to collect and process into heat packs.

        …But only if you’re heating your water using fossil fuels using an inefficient method! If your water is heated using solar or waste heat capture or a heat pump[4], which would swing the balance way over to hot water bottles again.

        1. https://brainly.com/question/16900421
        2. https://www.convertunits.com/from/moles+Iron/to/grams
        3. https://lbre.stanford.edu/pssistanford-recycling/frequently-asked-questions/frequently-asked-questions-benefits-recycling
        4. https://www.eec.org.au/for-energy-users/technologies-2/heat-pumps
      • @Zerush
        cake
        link
        12 years ago

        I know that iron filings are recycled in foundries, if not used for these patches or for other uses. I am referring to waste that is used by residual products from other manufacturing, which is obviously the case with iron filings and sawdust.

        It is true that a well-wrapped hot water bottle can store a little more heat than 1 hour, but not by far the 12 hours of these patches, which are also much more practical in their application, since they can be worn for a day cool comfortably under clothing, or on a sore part of the body, as they are primarily intended, without getting in the way of a job or activity during the day.

        For a hot water bottle, you first need to heat the water in the kitchen, which obviously implies an energy expenditure that we have to invest first and that is not necessary in these patches, which in themselves are a source of energy due to a chemical process. . Besides, they are still recyclable afterward, since the iron oxide, product of this chemical reaction, is still usable in foundries, since in any case iron oxide is the form in which this element appears in nature.

        These patches are obviously a 100% ecological and recyclable product, containing neither before nor after toxic or polluting residues, not necessarily the same in a hot water bottle, in the manufacture of which various chemical and plastic products are used, which are difficult to recycle (PVC in the cap, several toxic products used in the rubber…)

        • @rcbrk
          link
          3
          edit-2
          2 years ago

          Iron oxide is not recyclable in a foundry. It would need to go back to a smelter to be smelt into iron again, which I assume is about the same efficiency as smelting iron ore. (Smelting hematite requires ~20 GJ / tonne [1] = ~ 4460 kJ / 0.223kg). Spent iron oxide heat packs are probably best thrown in the compost.

          I agree that an iron powder heat pack can be far more practical where a highly portable slow emission of heat are both important for the application. The heat output for something 10% the weight of a water bottle is pretty impressive:

          • 1 litre water bottle cooling from 80 C to 40 C:
            • ~4kJ/kg⋅K[2] * 40 K * 1 kg = 160 kJ
          • 100g heat pack containing 50g iron[3]:
            • 50g * 1648kJ / 223g = 369 kJ [4]

          Iron powder heat packs need to be stored in suitable packaging (usually plastic) to protect them from moisture and oxygen until their single use.

          A hot water bottle needn’t be rubber or plastic.

          1. https://publications.csiro.au/rpr/download?pid=csiro:EP12183&dsid=DS3
          2. https://www.engineeringtoolbox.com/specific-heat-capacity-water-d_660.html
          3. https://www.tandfonline.com/doi/full/10.1080/15563650701711086
          4. https://lemmy.ml/post/156960/comment/112645
          • @Zerush
            cake
            link
            22 years ago

            Agree, in nature most Iron is in form of iron oxideFe2O3 or Fe3O4 i the iron ore. But yes, I don’t think there will be many who take the worn patches to a foundry, but thanks to their nature they are not an environmental problem to throw them away or use them for compost.