Almost everything that gets onto a commercial plane — fuel, checked-in baggage, cargo and meals — is weighed. For passengers and their cabin bags, most airlines use average data.

But Finland’s national carrier Finnair said Friday that it started asking passengers this week voluntarily and anonymously hop onto a scale with their hand luggage at the country’s main airport in Helsinki, the airline said Friday. The aim is to get their own figures.

“We will need data for both winter season and for summer season — in winter season people typically have heavier clothing, which impacts weights,” Finnair spokeswoman Päivyt Tallqvist told The Associated Press, adding that the survey would last until May.

Passengers boarding onto European and long-haul flights won’t be “penalized for their weight,” and “the numbers are kept discreet, away from prying eyes,” she added.

  • Everythingispenguins@lemmy.world
    link
    fedilink
    arrow-up
    2
    ·
    11 months ago

    No you are you are totally right you could analyze each flight that way and they do to a certain extent. All commercial aircraft do have a switch called the Weigh On Wheel sensor, which detects when the gear is loaded. I don’t know the sensitivity of them though. I do know that some planes the WOW is just a on/off switch. Some do use load sensors. I would expect them to have a pretty low resolution. So to do that they would need load cells that are both sensitive and extremely high weight. Plus you can’t just swap parts on a plane. Every part is certified and has all the government red tape. Additionally you can’t really feel it in the passenger cabin but planes move around a lot during loading and in loading. Getting a good data point may be difficult at best. If it is windy forget about it.

    Also you would still need to seat people in the class they paid for. So say all the big people are in first. I don’t know I am speculating a bit at this point.

    Fundamentally you are correct. I just don’t think that it would be as easy/possible to implement fleet wide. Part of what makes flying safe is the technology of commercial planes is always a generation or two old. So you always have to ask yourself if this could happen ~20 years ago.

    Having said all that, discount airlines would love to charge by the pound of flesh. I bet the only reason they don’t is optics.

    • SatanicNotMessianic
      link
      fedilink
      arrow-up
      1
      ·
      11 months ago

      That makes a lot of sense. I worked with space systems for a while, and so I’m very conscious of technological conservatism and its critical role in aviation and space systems. Absolutely no pushback there.

      I did not anticipate a binary/on-off system for weight detection. Even in legacy systems, that seems less than ideal, but I’ve been around enough that it shouldn’t surprise me. For that, though, I can see the need for more accurate readings and will concede that it might be cheaper to weigh every passenger than to upgrade a fleet given the certifications etc.

      I do harbor a suspicion that things like wind loading, given enough readings and the additional meteorological data, could be corrected for more cheaply than deploying a passenger weighing system just based on what I know about data corrections, but I do have to admit that I was not taking that effect into account in my initial thinking. This was exactly the kind of pragmatic insight I was hoping to get, so thank you! Basically, the approach I would start with would be the same flight number/aircraft model with the airport wind speed or other weather data and see how it affects variability against a null model where you assume no effect. But when you combine that with janky or binary sensors (and I’ve only been to Finland when the weather was actually quite nice so I can’t speak to the variability in their data), and then I can see why this approach might be quite pragmatic.

      Thank you! I learned something today.

      • Everythingispenguins@lemmy.world
        link
        fedilink
        arrow-up
        1
        ·
        11 months ago

        It is my pleasure this is what I like about lemmy, every so often you get to learn something new. I love finding out something I didn’t know before.

        I find that very interesting that you think that wind loading could be correct for. I would have that though that would have been impossible. It is interesting to know how things advance.

        Keep reading if you want to know more about WOW switchers. Avionics/flight system is not my area but I do know a little about it. The WOW switch is used of course to tell the aircraft it is on the ground. This is used by both the flight computer and the transponder.

        The transportation uses the WOW and speed to switch between in-flight or on the ground. Something that ATC uses to help with aid in approach/departure clearances especially if they can’t see the runways in the tower.

        It is used by the flight computer in a lot of different ways the main one is for CAT III landing where the auto pilot takes the plane all the way down to landing and rollout. Deploying things like auto brakes, speed brakes, thrust reversers, etc. It can also enable/disable some systems so the pilots can’t accidentally hit a button at the wrong time.

        One of the defining features of the WOW system is that it needs to have a positive signal for 2ish seconds in case of bounce on landing. As you could imagine very bad things could happen if the aircraft thinks it is somewhere it isn’t.

        Happy exploring.

        • SatanicNotMessianic
          link
          fedilink
          arrow-up
          1
          ·
          11 months ago

          In that use case, it makes perfect sense for a binary switch to say I am (not) on the ground. It doesn’t necessarily address the situations in which flight attendants will make manual adjustments to passenger seating assignments in smaller planes while at the gate (which I assume would still involve actual numerical values to some actionable degree of accuracy), but I’ve worked with enough engineered systems to know the design limitations that went into them versus what we wish they would do. That still happens in shipping smartphones. I remember working on a study design from 10 years ago where we could tell the survey team pulled over to the shoulder of the road based on their gps signal but only because they were in the middle of nowhere with a clear line of sight to multiple satellites.