Subspace is the answer of course!

  • INeedMana@lemmy.world
    link
    fedilink
    English
    arrow-up
    3
    arrow-down
    1
    ·
    11 months ago

    So it’s not like: when I affect the hue (some attribute) of my half, the other half will change too? That has always been my understanding of it

    • SpacetimeMachine@lemmy.world
      link
      fedilink
      English
      arrow-up
      9
      ·
      11 months ago

      No, measuring one particle collapses the entanglement and they no longer affect each other. It is a one time thing. You can’t modify them after they have been observed.

      • intensely_human@lemm.ee
        link
        fedilink
        English
        arrow-up
        1
        arrow-down
        1
        ·
        11 months ago

        So at best it can be used for unpredictable coordination between vastly-spaced armies.

        • SpacetimeMachine@lemmy.world
          link
          fedilink
          English
          arrow-up
          2
          ·
          11 months ago

          Nope. Because you don’t know when it will collapse,. Imagine you have 2 balls, a red and a blue. They are both put in boxes and each ship takes 1 box. After you travel a long distance you open your box. You have just collapsed the “superposition” of what color the balls were. You now know what color both balls are, but you don’t know if the other person has looked in their box yet.

          I think a lot of people get confused by the term “observe” when talking about collapsing quantum uncertainty. Observing requires a photon to interact with the particle which is what caused it to “choose” what state it is in.