• Communist
    link
    fedilink
    English
    arrow-up
    5
    ·
    1 year ago

    For large context models the hardware is prohibitively expensive.

    • supert@lemmy.sdfeu.org
      link
      fedilink
      English
      arrow-up
      2
      arrow-down
      1
      ·
      1 year ago

      I can run 4bit quantised llama 70B on a pair of 3090s. Or rent gpu server time. It’s expensive but not prohibitive.

      • anotherandrew@lemmy.mixdown.ca
        link
        fedilink
        English
        arrow-up
        1
        ·
        1 year ago

        I’m trying to get to the point where I can locally run a (slow) LLM that I’ve fed my huge ebook collection too and can ask where to find info on $subject, getting title/page info back. The pdfs that are searchable aren’t too bad but finding a way to ocr the older TIFF scan pdfs and getting it to “see” graphs/images are areas I’m stuck on.

    • Grimy@lemmy.world
      link
      fedilink
      English
      arrow-up
      1
      ·
      1 year ago

      I personally use runpod. It doesn’t cost much even for the high end level stuff. Tbh the openai API is easier though and gives mostly better results.

      • Communist
        link
        fedilink
        English
        arrow-up
        1
        ·
        1 year ago

        I specifically said “large context” how many tokens can you get through before it goes insanely slow?

        • Grimy@lemmy.world
          link
          fedilink
          English
          arrow-up
          1
          ·
          1 year ago

          Max token windows are 4k for llama 2 tho there’s some fine tunes that push the context up further. Speed is limited by your budget mostly, you can stack GPUs and there are most models available (including the really expensive ones)

          I’m just letting you know, If you want something easy, just use ChatGtp. I don’t find them overly expensive for what it is.