• Voyajer@lemmy.world
    link
    fedilink
    English
    arrow-up
    54
    ·
    edit-2
    1 year ago

    At their highest it was estimated that the Appalachians were comparable to the Himalayas, with the potential for multiple Everest height mountains along the chain.

    • wildginger@lemmy.myserv.one
      link
      fedilink
      English
      arrow-up
      32
      arrow-down
      1
      ·
      1 year ago

      They are also only half of the original mountain range, which was split when pangaea split apart.

      The other half is now resting across europe, I think along the northern range.

      • Ech@lemm.ee
        link
        fedilink
        English
        arrow-up
        6
        ·
        1 year ago

        What’s the limiting factor? I assume it’s something with gravity?

        • MonkderZweite@feddit.ch
          link
          fedilink
          English
          arrow-up
          7
          ·
          edit-2
          1 year ago

          I guess, because taller mountains need a bigger/heavier base (Mnt Everest is only a few km over it’s base, stone is too brittle) and a too heavy base gets “liquid” on, or literally under the plate (it’s magma underneath).

          Only guessing though.

          But then there’s Himalaya and the whole mongolian ranges on the same plate…

          Seeing it like that, we are beings of energy, existing on the thin skin of a ball of molten stone, revolving around a ball of fire.

          • uniqueid198x@lemmy.dbzer0.com
            link
            fedilink
            English
            arrow-up
            7
            ·
            1 year ago

            Mountain bases can support a lot. Everest is not terribly tall from its base, true, but Denali is 5500 meters from base to top and Mauna Kea rises to 10000 meters over base.

            Its also a bit of an incorrect picure to think of the interior magma as a liquid. It can flow, but it can also sieze up or crack. Its an in-between, like corn starch and water.

        • uniqueid198x@lemmy.dbzer0.com
          link
          fedilink
          English
          arrow-up
          6
          ·
          1 year ago

          Its indirectly gravity. The taller the mountain, the more eroding force can be pleced on it. Water travels faster and therefore cuts deeper.

          Everest is still uplifting fairly quickly at 1mm a year, but its also eroding at roughly the same pace and won’t get significantly taller than it is now. The same is true for the rest of the Himalaya as well, the whole range is eroding at a very high pace.

          The Himalaya are home to some very spectacular canyons, including the largest canyon above water. The geology there is on full display and incredible.