Assuming efficiency of ~4 miles per kWh (on the high end of current EV efficiency), that’s a 200kWh battery. charging that in 10 minutes would require 1.2MW’s of power, enough to power about 50-100 homes simultaneously. Now imagine a handful of vehicles charging simultaneously, consuming as much power as a small city.
I’m not sure people are going to be interested in paying for megawatt-capable chargers, anyway. There’s a couple of sites near me that have old 50 kW chargers and new 250 kW chargers, and have higher prices on the 250s. I expect that sort of thing to continue - providers are going to want to cover their costs and higher powered chargers are more expensive to buy and operate.
I’m getting close to 8m/kwh on the high-end. Realistically, I’m ranging between 3.6 to 5 m/kwh. But when I drove for Uber, I did 200 miles using only 34.1 kwh, I drove slow, and it was mostly city driving. So I could only need 137 kwh for 800 miles. Still prohibitively unrealistic to charge in 10 minutes. It’s about 1.4 MWatts to charge from empty for 10 minutes.
the charge power needed for the 200KWH is not 1.2 MWatts for 10 minutes, it’s 2MWatts. Mostly because you can only charge fast at lower percentage.
That would be impractical even for fleet vehicles.
Unless they’re also going to announce the development of nuclear fusion in order to provide the necessary cheap energy, then I don’t think this is going anywhere.
If the discharge rate can be equally speedy, it just means any “gas pump” will include the same battery tech, load itself slowly, then unload into the car quickly. Neat way to solve the “renewables are intermittent” problem.
Assuming efficiency of ~4 miles per kWh (on the high end of current EV efficiency), that’s a 200kWh battery. charging that in 10 minutes would require 1.2MW’s of power, enough to power about 50-100 homes simultaneously. Now imagine a handful of vehicles charging simultaneously, consuming as much power as a small city.
Imagine putting your tongue on the charging plug
I’m not sure people are going to be interested in paying for megawatt-capable chargers, anyway. There’s a couple of sites near me that have old 50 kW chargers and new 250 kW chargers, and have higher prices on the 250s. I expect that sort of thing to continue - providers are going to want to cover their costs and higher powered chargers are more expensive to buy and operate.
Why should we assume this?
It’s a fairly achievable efficiency.
They are being charitable to Toyota along the path of estimating capacity. Why shouldn’t that be assumed?
I’m getting close to 8m/kwh on the high-end. Realistically, I’m ranging between 3.6 to 5 m/kwh. But when I drove for Uber, I did 200 miles using only 34.1 kwh, I drove slow, and it was mostly city driving. So I could only need 137 kwh for 800 miles. Still prohibitively unrealistic to charge in 10 minutes. It’s about 1.4 MWatts to charge from empty for 10 minutes.
the charge power needed for the 200KWH is not 1.2 MWatts for 10 minutes, it’s 2MWatts. Mostly because you can only charge fast at lower percentage.
That would be impractical even for fleet vehicles.
Unless they’re also going to announce the development of nuclear fusion in order to provide the necessary cheap energy, then I don’t think this is going anywhere.
If the discharge rate can be equally speedy, it just means any “gas pump” will include the same battery tech, load itself slowly, then unload into the car quickly. Neat way to solve the “renewables are intermittent” problem.
That’s a cool idea! But then what happens when I get to the “pump” right after someone else has used it
Same thing as when you’re on a regular pump and the tank is empty. Pump battery size depending on demand.
Either that or trickle charge.