Stop comparing programming languages

  • Python is versatile
  • JavaScript is powerful
  • Ruby is elegant
  • C is essential
  • C++
  • Java is robust
  • polonius-rex@kbin.run
    link
    fedilink
    arrow-up
    8
    arrow-down
    3
    ·
    5 months ago

    exposing the machinations of the underlying CPU with no regard for safety is like, the definition of a footgun

    • CanadaPlus@lemmy.sdf.org
      link
      fedilink
      arrow-up
      6
      ·
      edit-2
      5 months ago

      Okay, but how do you code on a CPU without directly interfacing the CPU at some point? Python and JavaScript both rely on things written in mid-level languages. There’s a difference between a bad tool and one that just has limitations inherent to the technology.

      Like, to echo the meme a bit, it’s not a totally straight comparison. They have different roles.

      • polonius-rex@kbin.run
        link
        fedilink
        arrow-up
        6
        arrow-down
        1
        ·
        5 months ago

        a footgun isn’t inherently bad, it just implies a significant amount of risk

        yes, if you need the ability to code on a low level, maybe C is necessary, but the times where that is actually necessary is smol

        also rust

        • CanadaPlus@lemmy.sdf.org
          link
          fedilink
          arrow-up
          3
          ·
          edit-2
          5 months ago

          Yes, also Rust. It wasn’t an option until recently though.

          The times when C or C++ is worth it definitely isn’t always, but I’m not sure I’d class much of OS programming and all embedded and high-performance computing as small. If you have actual hard data about how big those applications are relative to others, I’d be interested.

          Also, it’s a nitpick, but I’d personally say a footgun has to be unforeseeable, like literal shoe guns being added to a video game where guns were previously always visible. Once you understand pointers C is reasonably consistent, just hard and human-error-prone. The quirks follow from the general concepts the language is built on.

          • BatmanAoD@programming.dev
            link
            fedilink
            arrow-up
            2
            ·
            5 months ago

            There were memory-safe languages long before C was invented, though; C was widely considered “dangerous” even at the time.

            • CanadaPlus@lemmy.sdf.org
              link
              fedilink
              arrow-up
              1
              ·
              5 months ago

              True, but AFAIK they all sucked really bad. If you needed to make something that preformed back then you wrote in assembly.

              FORTRAN might be a good counterexample. It’s pretty fast, and I’m not actually sure if it’s memory safe; it might be. But, it’s definitely very painful to work with, having had the displeasure.

              • BatmanAoD@programming.dev
                link
                fedilink
                arrow-up
                1
                ·
                edit-2
                5 months ago

                True, but AFAIK they all sucked really bad.

                That’s pure assumption and, as far as I can tell, not actually true. PASCAL was a strong contender. No language was competitive with handwritten assembly for several decades after C’s invention, and there’s no fundamental reason why PASCAL couldn’t benefit from intense compiler optimizations just as C has.

                Here are some papers from before C “won”, a more recent article about how PASCAL “lost”, and a forum thread about what using PASCAL was actually like. None of them indicate a strong performance advantage for C.

                • CanadaPlus@lemmy.sdf.org
                  link
                  fedilink
                  arrow-up
                  1
                  ·
                  edit-2
                  5 months ago

                  Hmm, that’s really interesting. I went down a bit of a rabbit hole.

                  One thing you might not know is that the Soviets had their own, actually older version of C, the Адресный programming language, which also had pointers and higher-order pointers, and probably was memory-unsafe as a result (though even with some Russian, I can’t find anything conclusive). The thing I eventually ran into is that Pascal itself has pointer arithmetic, and so is vulnerable to the same kinds of errors. Maybe it was better than C, which is fascinating, but not that much better.

                  Off-topic, that Springer paper was also pretty neat, just because it sheds light on how people thought about programming in 1979. For example:

                  In the following, we shall

                  1. compare how “convenient” the languages are to code our favourite solution to a programming problem,

                  2. play the devil’s advocate, and try to list all possible things that can go wrong in a program expressed in a language.

                  Some of us, including myself, have reservations about the validity of the second technique for comparison, the most persuasive argument being that even though some of the features are potentially dangerous, people rarely use them in those contexts. There is certainly some truth in this, but until we have experimentally collected data convincingly demonstrating this, it is wiser to disbelieve it. Take note of the observed fact of increased difficulty in formally proving the properties of programs that use these potentially hazardous features in a safe way. This is one of the reasons behind the increased redundancy (and restrictions) of the newer languages like Alphard

                  I don’t see a lot of people denying that 2 is a good metric today. In fact, in the rare exceptions where someone has come right out and said it, I’ve suspected JS Stockholm syndrome was involved. Murphy’s law is very real when you not only have to write code, but debug and maintain it for decades as a large team, possibly with significant turnover. Early on they were still innocent of that, and so this almost reads like something a non-CS acedemic would write about programming.

                  • BatmanAoD@programming.dev
                    link
                    fedilink
                    arrow-up
                    1
                    ·
                    5 months ago

                    Indeed, I had no idea there are multiple languages referred to as “APL”.

                    I feel like most people defending C++ resort to “people shouldn’t use those features that way”. 😅

                    As far as I can tell, pointer arithmetic was not originally part of PASCAL; it’s just included as an extension in many implementations, but not all. Delphi, the most common modern dialect, only has optional pointer arithmetic, and only in certain regions of the code, kind of like unsafe in Rust. There are also optional bounds checks in many (possibly most) dialects. And in any case, there are other ways in which C is unsafe.

          • polonius-rex@kbin.run
            link
            fedilink
            arrow-up
            1
            ·
            5 months ago

            Once you understand pointers

            once you understand C++ the pitfalls of C++ are reasonably consistent

            I’m not sure I’d class much of OS programming and all embedded and high-performance computing as small

            there are like what, 3 operating systems these days?

            assume those are all written entirely in c and combine them and compare that to all code ever written

            • CanadaPlus@lemmy.sdf.org
              link
              fedilink
              arrow-up
              2
              ·
              edit-2
              5 months ago

              once you understand C++ the pitfalls of C++ are reasonably consistent

              All of C++? That’s unreasonable, it’s even in the name that it’s very expansive. Yes, if you already know a thing, you won’t be surprised by it, that’s a tautology.

              C is more than just pointers, obviously, but the vast majority of the difficulty there is pointers.

              there are like what, 3 operating systems these days? assume those are all written entirely in c and combine them and compare that to all code ever written

              Plus all previous operating systems, all supercomputer climate, physics and other science simulations, all the toaster and car and so on chips using bespoke operating systems because Linux won’t fit, every computer solving practical engineering or logistics problems numerically, renderers…

              Basically, if your computational resources don’t vastly exceed the task to be done, C, Rust and friends are a good choice. If they do use whatever is easy to not fuck up, so maybe Python or Haskell.

              • polonius-rex@kbin.run
                link
                fedilink
                arrow-up
                2
                ·
                edit-2
                5 months ago

                All of C++? That’s unreasonable, it’s even in the name that it’s very expansive.

                similarly, “all of pointers” is unreasonable

                “all of pointers” can have a lot of unexpected results

                that’s literally why java exists as a language, and is so popular

                Plus all previous operating systems, all supercomputer climate, physics and other science simulations, all the toaster and car and so on chips using bespoke operating systems because Linux won’t fit, every computer solving practical engineering or logistics problems numerically, renderers…

                sure, and the quantity of code where true low-level access is actually required is still absolutely minuscule compared to that where it isn’t

                • CanadaPlus@lemmy.sdf.org
                  link
                  fedilink
                  arrow-up
                  2
                  ·
                  5 months ago

                  similarly, “all of pointers” is unreasonable

                  “all of pointers” can have a lot of unexpected results

                  How? They go where they point, or to NULL, and can be moved by arithmetic. If you move them where they shouldn’t go, bad things happen. If you deference NULL, bad things happen. That’s it.

                  sure, and the quantity of code where true low-level access is actually required is still absolutely minuscule compared to that where it isn’t

                  If you need to address physical memory or something, that’s a small subset of this for sure. It also just lacks the overhead other languages introduce, though. Climate simulations could be in Java or Haskell, but usually aren’t AFIAK.

                  • polonius-rex@kbin.run
                    link
                    fedilink
                    arrow-up
                    2
                    ·
                    5 months ago

                    How? They go where they point, or to NULL, and can be moved by arithmetic. If you move them where they shouldn’t go, bad things happen. If you deference NULL, bad things happen. That’s it.

                    what part of that is explicit to how scanf works?