If you haven’t noticed, the space stations we do build require international cooperation and are basically just a bunch of rocket sections stuck together. The ISS, in all of its glory, took years to assemble and has some serious design constraints.
A project of that magnitude would require lots of highly specialized parts to be launched into orbit first, or, we somehow manage to build an entire fabrication facility in orbit where it can process raw materials.
The concept of a rotating ring is simple. Developing the means to build it is hyper-complex.
You don’t have to build a whole ring. You just need a boom and a counterweight.
I guess the hard part would be that a truncated-circle-sector-shaped room is more awkward to launch than a rocket-section-shaped one of equivalent usable space. (Also, you need a tube and a ladder down to a docking port at the center of mass, because spaceships can’t line up with a target swinging through an arc.)
basically just a bunch of rocket sections stuck together. The ISS, in all of its glory, took years to assemble and has some serious design constraints.
Not THAT complex. They already have several prototypes they’re planning on testing. They won’t be giant rotating stations, but rooms of a few meters across. It doesn’t take much rotation to get useful amounts of g’s.
I mean it sounds simple, obviously doing that we be a ton of work, but it seems very feasible. And doing that would be an incredible starting point for space industry. From there, we could send out automated probes to capture trojan asteroids from earths orbit and launch them into lunar orbit for collection. We could even put them in a non stable orbit that bleeds off orbital speed and eventually they bleed off enough to land while staying in almost one piece depending on the type of asteroid.
There’s got to be a way to take advantage of tidal locking mechanisms, but artificially accelerated in pace, using a satellite that can alter its own spin, to alter that satellite’s orbit.
There’s got to be. Two bodies in orbit are in contact and should be able to act upon one another to arrange themselves with regard to one another.
Well, despite my blunder, my original thinking was that unstable orbits do exist, and you would in theory be able to bleed of orbital speed. The issue is that that orbital speed would be converted into potential energy without an atmosphere.
It would be much more long term but we could make a space tether in orbit of the moon. As asteroids are flung to the moon it could catch them and gain angular momentum as the asteroid loses speed. We’d just have to find a way to bleed that angular momentum. It could be for return packages to earth, but with the rail gun already in place, that seems somewhat useless.
On the other hand, it would be difficult to aim the rail gun, whereas the space tether would be somewhat easier to aim.
Can we not do the whole the rotat8ng ring artificial gravity yet?
Like. Why are we not doing this? Can we not do this?
If you haven’t noticed, the space stations we do build require international cooperation and are basically just a bunch of rocket sections stuck together. The ISS, in all of its glory, took years to assemble and has some serious design constraints.
A project of that magnitude would require lots of highly specialized parts to be launched into orbit first, or, we somehow manage to build an entire fabrication facility in orbit where it can process raw materials.
The concept of a rotating ring is simple. Developing the means to build it is hyper-complex.
You don’t have to build a whole ring. You just need a boom and a counterweight.
I guess the hard part would be that a truncated-circle-sector-shaped room is more awkward to launch than a rocket-section-shaped one of equivalent usable space. (Also, you need a tube and a ladder down to a docking port at the center of mass, because spaceships can’t line up with a target swinging through an arc.)
You climb up to the center, not down.
Station Alpha intensifies
Not THAT complex. They already have several prototypes they’re planning on testing. They won’t be giant rotating stations, but rooms of a few meters across. It doesn’t take much rotation to get useful amounts of g’s.
How hard could it be? It’s not like it’s rocket science or anything.
I’m a brain surgeon, you know?
Yes, literally already being worked on. By rocket scientists.
You can get spin gravity from two starships rotating around one another while linked by a cable.
Or two of any ship. But starship’s the only one being discussed for mass production and in-space operations.
Moon factory, rail gun
I mean it sounds simple, obviously doing that we be a ton of work, but it seems very feasible. And doing that would be an incredible starting point for space industry. From there, we could send out automated probes to capture trojan asteroids from earths orbit and launch them into lunar orbit for collection. We could even put them in a non stable orbit that bleeds off orbital speed and eventually they bleed off enough to land while staying in almost one piece depending on the type of asteroid.
How do you bleed orbital speed around a body with no atmosphere?
Hmm… yes.
There’s got to be a way to take advantage of tidal locking mechanisms, but artificially accelerated in pace, using a satellite that can alter its own spin, to alter that satellite’s orbit.
There’s got to be. Two bodies in orbit are in contact and should be able to act upon one another to arrange themselves with regard to one another.
My gut is telling me there’s a way to do that.
Well, despite my blunder, my original thinking was that unstable orbits do exist, and you would in theory be able to bleed of orbital speed. The issue is that that orbital speed would be converted into potential energy without an atmosphere.
It would be much more long term but we could make a space tether in orbit of the moon. As asteroids are flung to the moon it could catch them and gain angular momentum as the asteroid loses speed. We’d just have to find a way to bleed that angular momentum. It could be for return packages to earth, but with the rail gun already in place, that seems somewhat useless.
On the other hand, it would be difficult to aim the rail gun, whereas the space tether would be somewhat easier to aim.
No, we can’t actually. That’s why it isn’t done. It’s science fiction, even if the math checks out.
A space station with artificial gravity would be a good project, rather than sending a man on Mars just to take a selfie.
There’s no real technical reason why we couldn’t do it. The main component lacking is political will