Despite its name, the infrastructure used by the “cloud” accounts for more global greenhouse emissions than commercial flights. In 2018, for instance, the 5bn YouTube hits for the viral song Despacito used the same amount of energy it would take to heat 40,000 US homes annually.

Large language models such as ChatGPT are some of the most energy-guzzling technologies of all. Research suggests, for instance, that about 700,000 litres of water could have been used to cool the machines that trained ChatGPT-3 at Microsoft’s data facilities.

Additionally, as these companies aim to reduce their reliance on fossil fuels, they may opt to base their datacentres in regions with cheaper electricity, such as the southern US, potentially exacerbating water consumption issues in drier parts of the world.

Furthermore, while minerals such as lithium and cobalt are most commonly associated with batteries in the motor sector, they are also crucial for the batteries used in datacentres. The extraction process often involves significant water usage and can lead to pollution, undermining water security. The extraction of these minerals are also often linked to human rights violations and poor labour standards. Trying to achieve one climate goal of limiting our dependence on fossil fuels can compromise another goal, of ensuring everyone has a safe and accessible water supply.

Moreover, when significant energy resources are allocated to tech-related endeavours, it can lead to energy shortages for essential needs such as residential power supply. Recent data from the UK shows that the country’s outdated electricity network is holding back affordable housing projects.

In other words, policy needs to be designed not to pick sectors or technologies as “winners”, but to pick the willing by providing support that is conditional on companies moving in the right direction. Making disclosure of environmental practices and impacts a condition for government support could ensure greater transparency and accountability.

  • Spedwell@lemmy.world
    link
    fedilink
    English
    arrow-up
    20
    arrow-down
    6
    ·
    edit-2
    8 months ago

    The reason the article compares to commercial flights is your everyday reader knows planes’ emissions are large. It’s a reference point so people can weight the ecological tradeoff.

    “I can emit this much by either (1) operating the global airline network, or (2) running cloud/LLMs.” It’s a good way to visualize the cost of cloud systems without just citing tons-of-CO2/yr.

    Downplaying that by insisting we look at the transportation industry as a whole doesn’t strike you as… a little silly? We know transport is expensive; It is moving tons of mass over hundreds of miles. The fact computer systems even get close is an indication of the sheer scale of energy being poured into them.