The U.S. Coast Guard said Thursday a remote operated vehicle (ROV) discovered a "debris field" near the Titanic wreckage site where a submersible went missing.
But tissue is mostly water with some solutes and a lipid membrane. I don’t think the cellular structure would implode… It’s malleable enough… There are gelatinous animals in the deep sea with cells and such. But any cavity would implode. Lungs, thoracic cavity, digestive system, abdominal cavity, even the small pores in your bones if they aren’t packed full of equally dense liquid (not sure on this). The thoracic and abdominal cavity and pores in your bones are technically fluid filled… but since it’s not as densely packed as it would be under pressure at that depth, I think it would still get crushed. I think the difference between this and the cells is the rigidity of the structures. Cells can shrink decently well under pressure and then equilibrate via osmosis. Cavities and bones can not.
However, your cellular structures (proteins and such) are probably fucked. They are super fragile and need very specifically equlibrated environments to survive.
But tissue is mostly water with some solutes and a lipid membrane. I don’t think the cellular structure would implode… It’s malleable enough… There are gelatinous animals in the deep sea with cells and such. But any cavity would implode. Lungs, thoracic cavity, digestive system, abdominal cavity, even the small pores in your bones if they aren’t packed full of equally dense liquid (not sure on this). The thoracic and abdominal cavity and pores in your bones are technically fluid filled… but since it’s not as densely packed as it would be under pressure at that depth, I think it would still get crushed. I think the difference between this and the cells is the rigidity of the structures. Cells can shrink decently well under pressure and then equilibrate via osmosis. Cavities and bones can not.
However, your cellular structures (proteins and such) are probably fucked. They are super fragile and need very specifically equlibrated environments to survive.
But this is just all me postulating.