I’d personally prefer 12 months with 30 days each, a 6-day week (makes for even rotations in shifts, 4 on 2 off), and an inter-calary week of 5 to 6 days at the new year.
If we’re going for broke on this I’d also want to convert to the dozenal system over decimal, as 12 is more easily divisible by smaller numbers which means easier division for numbers we use more often (like 3 or 4), which means that ¼ would be 0.3 and ⅓ would be 0.4.
you can still use your fingers. it’s how we got our standard of time. Back then they counted the joints in our fingers minus thumb. 4 sets of 3 for our four fingers and 3 joints per finger. Then 5 sets of 12 to make 60. as they would use the fingers on the other hand to track how many times they counted to 12.
I would say that at the very least we could adjust February by taking a day from July and August and the extra day every four years could be added inbetween them as a “monthless” day in the middle of the summer.
A dozenal system is more difficult in multiplication. Decimal: 10^7 =10000000, 10^8=100000000, 10^9=1000000000, etc.
Dozenal: 12^7= 35831808, 12^8=429981696, 12^9=5159780352.
Gets very messy very quick.
I’d personally prefer 12 months with 30 days each, a 6-day week (makes for even rotations in shifts, 4 on 2 off), and an inter-calary week of 5 to 6 days at the new year.
If we’re going for broke on this I’d also want to convert to the dozenal system over decimal, as 12 is more easily divisible by smaller numbers which means easier division for numbers we use more often (like 3 or 4), which means that ¼ would be 0.3 and ⅓ would be 0.4.
12? Ew. As someone who relies on my fingers to count I repudiate such discriminatory system!
you can still use your fingers. it’s how we got our standard of time. Back then they counted the joints in our fingers minus thumb. 4 sets of 3 for our four fingers and 3 joints per finger. Then 5 sets of 12 to make 60. as they would use the fingers on the other hand to track how many times they counted to 12.
My favorite system like this is the Oksapmin counting system. They use a base 27 system. It’s based upon counting upper body parts.
The Babylons had a great counting system using the segments of their fingers
Thought I prefer the binary counting system
So, like, I understand the binary one, I see what you did there and all. But a system where ☝️ means “2” is just wrong.
Also, what number is the shocker?
22
Wow. A dozenal system sounds useful! We should use it for measuring distances!
Fuck it. Lets get real and just go all the way back to Sumeria. Sexagesimal numbering system here we come.
I like that with 13 each month starts on a Monday and ends on a Sunday. Makes that calculation super easy.
With six days a week for a 30-day month, each month would also start with the same day.
7 day weeks are such a mess
True. But I think as long as the weeks aren’t cut up by months it’s still a massive simplification.
I would say that at the very least we could adjust February by taking a day from July and August and the extra day every four years could be added inbetween them as a “monthless” day in the middle of the summer.
A dozenal system is more difficult in multiplication. Decimal: 10^7 =10000000, 10^8=100000000, 10^9=1000000000, etc.
Dozenal: 12^7= 35831808, 12^8=429981696, 12^9=5159780352.
Gets very messy very quick.
That’s because you’re working in base 10. That person wants to covert to base 12.
In which case teaching kids to count becomes more difficult because we have ten fingers
Unless you use your thumb to point to the phalanges of each finger.
Ok that’s me convinced. I’m on board train dozenal!
Wait till you hear about these things called inches!
Yeah that’s true.
In base 12 12^7 would be written as 10000000 too.