we need teleportation frankly

  • Deceptichum@kbin.social
    link
    fedilink
    arrow-up
    4
    arrow-down
    2
    ·
    1 year ago

    How’s quantum teleportation work in this universe? Because that’s apparently a thing already.

    • berg@lemm.ee
      link
      fedilink
      arrow-up
      3
      ·
      1 year ago

      That’s quite the question to ask, but as far I can tell it only works with quantum information. Sending a body would be like you trying to fit into a fiber cable to be bounced inside of beneath the Atlantic to avoid the otherwise long flight.

      • Deceptichum@kbin.social
        link
        fedilink
        arrow-up
        3
        arrow-down
        1
        ·
        edit-2
        1 year ago

        From what I know of sci-fi, teleportation is often a machine that scans, destroys, and replicates the particles in your body at a secondary location.

        So if we could figure out scanning and printing at the atomic scale, with zero defects, and pair it with sending information at near instant speeds via quantum teleportation, we could have a teleporter.

        • berg@lemm.ee
          link
          fedilink
          arrow-up
          2
          arrow-down
          1
          ·
          1 year ago

          … if we could figure out scanning and printing at the atomic scale, with zero defects

          I think this is a bigger issue currently than sending large amounts of data across the globe. Though I wonder how much data a full copy would demand.

          • Deceptichum@kbin.social
            link
            fedilink
            arrow-up
            6
            ·
            1 year ago

            You just made me curious and we’re not alone in wondering

            To have a scanner that can record the position of every atom in the body to an accuracy of the order of the size of a hydrogen atom would require position accuracy of about 10-10 meters. To get that accuracy over a distance of order 1 meter, this would require 30 decimal digits, which would be about 100 binary digits per atom. However, there would be a lot of redundancy in this data, so let’s be optimistic and assume you could compress this down to 1 bit per atom, so we still need approximately 1027 bits of data to just specify the positions of all the atoms in a human body. According to Wikipedia (Exabyte), the approximate data storage capacity of all the computers and storage devices in the world today is roughly 1 zettabyte = 1021 bytes = 1022 bits. Therefore, the data for the scan of one human would require at least 10,000 times the total storage of all the data stored on Earth right now.

            https://slate.com/human-interest/2013/05/is-teleportation-possible.html

            • papalonian@lemmy.world
              link
              fedilink
              arrow-up
              2
              ·
              1 year ago

              I was getting incredibly confused because the copy/paste didn’t copy the superscript for the exponents. I was like, “there’s definitely more than 1027 atoms in the body… wait, how are there supposedly only 1021 bytes of storage in the whole world? Oooh…”

            • Xariphon@kbin.social
              link
              fedilink
              arrow-up
              1
              ·
              1 year ago

              Now I’m wondering how long it would realistically take for that to become a not-insane demand. I know data storage multiplies pretty rapidly, but not that rapidly, so are we talking decades or centuries?

              • Deceptichum@kbin.social
                link
                fedilink
                arrow-up
                2
                arrow-down
                1
                ·
                edit-2
                1 year ago

                Apparently we can already do it, a gram of dna can store 215 petabytes and we can encode to dna at 18Mbps.

                Gonna be a long upload.