An ultra-precise measurement of a transition in the hearts of thorium atoms gives physicists a tool to probe the forces that bind the universe.

      • macarthur_park@lemmy.world
        link
        fedilink
        English
        arrow-up
        4
        arrow-down
        1
        ·
        3 months ago

        Eh, theorists just work in units where they’re all 1 anyway. And experimentalists round to to the nearest order of magnitude lol

    • Treczoks@lemmy.world
      link
      fedilink
      English
      arrow-up
      11
      ·
      3 months ago

      They will be called “variables” in the future, and scientists will try to figure out how they tick. And: They were seen as constants for a sufficientyl long time, so still treating them like constants won’t hurt, as the value will probably only vary over long reaches of time or unlikely/uncommon circumstances like relativistic speeds.

      We treat g = 9.81m/s², well knowing that this changes depending on height and location. But this value is totally sufficient for everyday purposes, and no bridge will ever collapse just because of local derivations from 9.81. The precise local value of g is only of relevance for a very small range of applications.

    • Uriel238 [all pronouns]@lemmy.blahaj.zone
      link
      fedilink
      English
      arrow-up
      7
      ·
      3 months ago

      It won’t affect much except bleeding edge theoretical physics. Much the way we don’t need relativity to make airplanes fly (but round-earth gravity models help for long distance flights).

      Physical laws are mathematical models that reflect natural forces and predict outcomes (accurately that we can fling cans of passengers across the world safely). It wouldn’t be the first time we discovered that some previously constant forces are actually variable (much the way the force of gravity is affected by distance, noticeable only when you lob something high enough.) We shrug and change the variables, and some physicists near retirement may balk and say it’s ridiculous, as Einstein did regarding Heisenberg’s probability-based quantum mechanics.

      • Billiam@lemmy.world
        link
        fedilink
        English
        arrow-up
        5
        ·
        3 months ago

        It wouldn’t be the first time we discovered that some previously constant forces are actually variable (much the way the force of gravity is affected by distance, noticeable only when you lob something high enough.)

        More specifically to your example, we discovered that gravity isn’t a force at all- it’s a literal curvature of space-time caused by objects with mass, which is why its effects aren’t constant.