nations flock to the cratered south pole and far side of the moon, where critical resources such as water could be mined.

Is capitalism so prevalent, we’re running out of ocean already?

  • Arete@lemmy.world
    link
    fedilink
    English
    arrow-up
    53
    arrow-down
    6
    ·
    9 months ago
    1. it landed upright and tipped over
    2. transporting water to orbit, the moon, or beyond, is expensive. Mining it may be cheaper.
    3. not everything needs to be a critique of capitalism
      • NaibofTabr@infosec.pub
        link
        fedilink
        English
        arrow-up
        21
        ·
        edit-2
        9 months ago

        Getting water in space for making fuel and oxygen, drinking, sanitation and growing plants will be way more sustainable than lifting water off of Earth for use in space.

        Water is an absolutely essential resource but it’s heavy and it doesn’t compress (you can’t make it smaller to fit on a rocket). Lifting water mass into orbit is ridiculously expensive in terms of rocket fuel and vehicle use.

        The moon is a dead rock. There’s no ecology to disturb. It’s nearby (comparatively), and a much easier target to land on than an asteroid, but also relatively easy to take off from again after you’ve landed. We should get water there if we can.

        • Dieinahole@kbin.social
          link
          fedilink
          arrow-up
          6
          arrow-down
          1
          ·
          9 months ago

          Probably dumb idea, but what about taking hydrogen and oxygen, both of which can be compressed?

          Plus, when you make water with them, they go bang, which definitely has some applications

          • NaibofTabr@infosec.pub
            link
            fedilink
            English
            arrow-up
            9
            ·
            9 months ago

            The problem is that in gas form hydrogen and oxygen take up more volume than they would as liquid water. To store them compactly you have to cool them to liquid, but that requires a bulky and power-hungry refrigeration system.

            Also, hydrogen is a nasty thing to try to store in pure form. You have to deal with embrittlement. Hydrogen has one electron which it easily gives up to form a chemical bond with whatever happens to be around… such as the walls of the storage vessel or the seal around the valve or whatever the valve is made of… and that bond degrades the integrity of the container and eventually it leaks, and then you have a pure hydrogen leak to deal with. Most applications that need hydrogen try to generate it as close to the time of use as possible. Trying to keep pure hydrogen in a tank sucks.

            Hydrogen + oxygen is the most energetic chemical reaction you can get, which makes it effective for rocket propulsion. But there are other fuels used such as RP-1 (refined kerosene) because they’re less of a PITA to deal with than hydrogen and depending on your rocket design you might get better efficiency if you don’t have to carry the extra weight of the hydrogen cooling and storage system.

      • Spzi@lemm.ee
        link
        fedilink
        arrow-up
        1
        ·
        9 months ago

        Sustainability loses it’s meaning in space, or needs a whole different meaning. There are no ecosystems on other planets or moons which we could tip over with unsustainable practices.

        Just throwing this out without addressing the glaring differences looks like uninformed romanticism.

  • wahming@monyet.cc
    link
    fedilink
    English
    arrow-up
    28
    arrow-down
    3
    ·
    9 months ago

    Is capitalism so prevalent, we’re running out of ocean already?

    I have to say, I expected smarter takes in a community about space

  • Rayston@kbin.social
    link
    fedilink
    arrow-up
    25
    arrow-down
    1
    ·
    9 months ago

    It’s not to bring back to earth, it’s to use in space, water is heavy and it’s crazy expensive to put water into space.

    • NaibofTabr@infosec.pub
      link
      fedilink
      English
      arrow-up
      7
      ·
      9 months ago

      Water is:

      • a source of oxygen for breathing
      • a source of hydrogen for rocket fuel
      • a source of hydrogen for fuel cells for power generation
      • for drinking (obviously)
      • for sanitation
      • for growing food
      • fantastic radiation shielding (important when you don’t have an atmosphere to absorb solar radiation) - embed water tanks in your habitat walls or just mount them on the outside - nice layer of cancer prevention

      So yeah, there’s too many uses for water in space and it’s really difficult to lift into orbit from Earth. Even if some future moon base starts producing an excess of water, it’ll be used to resupply other space habitats or vehicles.

  • Fondots@lemmy.world
    link
    fedilink
    arrow-up
    9
    arrow-down
    1
    ·
    9 months ago

    To further break down what others are saying about the cost to send water to space, it cost thousands of dollars per kilogram to put something into orbit. Every extra bit of mass you want to send up needs extra fuel. The numbers are a bit all over the place depending on which rocket you use and other factors, but as a rough rule of thumb after googling around a bit, you can kind of figure on it taking about 100kg of fuel to shoot 1kg of payload into space, which means at the low end that 1kg costs around $5,000 to launch. That’s how much it costs to fight gravity and air resistance to get into space.

    I’m gonna bounce around between units a bit because I’m American and I think in our crazy units by default. Generally speaking, an adult needs about a gallon of water a day. That’s a bit less than 4 liters, a liter of water weighs about 1kg. So just to get 1 crew members water supply for one day, you’re looking at about $20,000. Multiply that by however many crew members you have and how many days of water you need, and it adds up fast. And that’s before you account for the water you may need for other uses, experiments, equipment, etc. Once it’s up there, space vessels are mostly a closed system, you can recycle the water you have up there to some degree, but there will be some losses, it takes some time and energy to reclaim that water, and you don’t want to be skating by with exactly as much water as you theoretically need, you want to have some in reserve in case it’s needed.

    The ISS has a crew of 7 people. Even if we assume our water recycling is efficient enough that the water you used yesterday can all be reprocessed today and be ready to be used again tomorrow without any loss (which I’m sure isn’t the case) you’d still probably want at least 3 days of water per person, so you have at least 1 day of reserve water just in case it’s needed (in reality I’m sure they probably need several days worth of water, if not a week or a month’s worth) so 3 gallons x 7 crew members x $5000 = $105,000 at a theoretical minimum just to send up the ISS crew’s water supply, and again the actual cost is probably several times that much.

    And even if water magically had no weight, it still takes up space. For pretty much all practical purposes water is incompressible, you can’t really make a kg of water take up any less space no matter what you do to it. That’s space that could potentially be used to send something else up but can’t because you need to send up the water.

    The moon, however, has about 1/6 of the earth’s gravity, and no real atmosphere worth mentioning so no air resistance to fight against, so you need a lot less fuel to get something into space from the moon. So if you have a moon base that’s capable of extracting water on the moon, it could be a hell of a lot cheaper to send that water to wherever else you might need it in space than if you launched it from earth.

    Not to mention any other resources we could potentially get on the moon, Mars, asteroids, etc.

    And as others have mentioned, we could potentially split that water into hydrogen and oxygen to use as rocket fuel (and breathing oxygen.) Looking longer-term, if we manage to end up with a self-sustaining moon base that’s able to grow their own food, and meet their other needs from the moon’s resources with excess to spare, the moon could essentially become the first pitstop on the way to other planets. We send our astronauts up with just enough supplies to make it to the moon, then they load up with more fuel, oxygen, food, water, etc. and head off to their destination from there, saving us the cost of launching all of those supplies into space. Kind of like if you were to start off on a road trip with a quarter tank of gas because you know just across the state line the gas is a lot cheaper so you’ll fill up there and save a few bucks. We’re probably a long way off from that, but sometimes you have to plan well ahead.

    • LesserAbe@lemmy.world
      link
      fedilink
      arrow-up
      3
      ·
      9 months ago

      There’s a section of the book “A City on Mars” which covers the water we know about so far on the moon. In short, it’s absolutely desirable, however there is not very much water in absolute terms, so we’re looking at a gold rush type situation with the potential to exhaust what’s there.

      • Overzeetop@lemmy.world
        link
        fedilink
        English
        arrow-up
        1
        ·
        9 months ago

        a gold rush type situation with the potential to exhaust what’s there.

        The older I get the more I think that this is humanity’s (sole) core competency. sigh

      • Fondots@lemmy.world
        link
        fedilink
        arrow-up
        1
        ·
        9 months ago

        Yeah, exhausting resources on the moon is a valid concern, it could be an invaluable, even necessarily asset to furth space exploration, but should probably be viewed as a stepping stone to something more sustainable, possibly asteroid mining, capturing comets etc.

        I certainly glossed over that in my comment because it was already getting longer than I liked and I kind of wanted to focus on just the cost of getting things into space, but it is something that needs to be managed carefully or we lose an important foothold we might need to take the next steps.

        I’m certainly no rocket scientist or astrophysicist so exact details are a bit over my head, and to be clear I’m talking about long term goals that are decades if not centuries out, but I’d kind of imagine that the ideal situation would be something like using the moon to get enough fuel to go mine a few comets and then use the ice from those comets to support future missions instead of getting it all from the moon.

  • EarMaster@lemmy.world
    link
    fedilink
    arrow-up
    5
    ·
    edit-2
    9 months ago

    I love how everyone here is jumping on the comment about water in the ocean and writing essays about it. 🤣

    Obviously they are not after the water, the real reason is moon cheese as cow’s are producing too much methane.

  • fay_kreal@kbin.social
    link
    fedilink
    arrow-up
    5
    ·
    edit-2
    9 months ago

    Don’t follow much space news but guessing it’s for colonization possibilities / setting up stations

    • mmazikinn@lemm.ee
      link
      fedilink
      arrow-up
      1
      ·
      9 months ago

      I’m kind of excited about it honestly, especially with talks of setting up an orbital lunar station like the ISS. Maybe I’ve played too much KSP and Elite Dangerous, but I think the fact that they’re starting to build truck stops in space is cool as fuck. It’s going to open up a lot of new possibilities for space travel and infrastructure.

  • eRac@lemmings.world
    link
    fedilink
    arrow-up
    5
    arrow-down
    1
    ·
    9 months ago

    They aren’t hoping to bring water back to earth. One of the biggest limiters to exploring other planets is getting the resources we need to travel and survive off of Earth. It’s way easier to get off the moon, so moon bases mining water to drink, farm, and make fuel out of are a logical move.